
Machine Learning-assisted Fault Injection
Mehrdad Moradi, Bentley James Oakes, and Joachim Denil

University of Antwerp and Flanders Make vzw, Belgium
{Mehrdad.Moradi, Bentley.Oakes, Joachim.Denil}@uantwerpen.be

Abstract—Fault Injection (FI) is a method for system validation
and verification in which the tester evaluates the system behavior
resulting from the introduction of faults into the system under
test. This paper proposes a model-based approach to improve the
efficiency of the FI process by utilizing Machine Learning (ML)
and formalized domain knowledge. This ML algorithm uses a
probabilistic automaton to reduce the manual effort required in
the testing procedure as the algorithm can automatically make
decisions and predictions about catastrophic fault parameters.
This assists the tester in dealing with complicated and broad-scale
systems by enabling higher fault coverage with fewer simulations.

Index Terms—Fault injection, Machine learning, Validation
and verification, Safety assessment, Domain knowledge, Bayesian
networks

I. INTRODUCTION

Cyber-physical systems (CPS) are complex engineered sys-
tems that have tight integration between the cyber (com-
putation and networking) and physical components [1]. An
example of a CPS is an autonomous vehicle, which will play
an increasing role in daily life within a few years. These
systems are safety-critical as faults in the system can result
in catastrophic situations resulting in severe injury or loss of
life. For example, faulty sensor readings in an autonomous
car might result in the non-detection of a pedestrian that is
crossing the street, with life-threatening consequences.

Vendors may perform safety assessment by executing Fault
Injection (FI) experiments. FI is a testing method aiming to
stress the real or virtual system to validate, verify, and evaluate
the safety mechanisms of the systems [2]–[4]. In FI, a fault is
introduced into the system, such that the system’s behavior can
then be analyzed to evaluate whether or not this fault results
in unsatisfactory or dangerous system performance.

Faults have three main dimensions [3] which creates the
fault space: (i) type: what should be injected? (ii) location:
where should it be injected? (iii) time: when should it be
activated? For modern CPSs, choosing the fault with the most
impact from such a large fault space requires an enormous
amount of time and effort. Hence, traditional FI methodologies
are ineffective for current complex systems.

Research problem: FI is traditionally based on experimen-
tation and simulation on hardware and/or software prototypes
of a system [2], [5]. The state-of-the-art techniques for FI are
mainly aimed at the evaluation of the computational hardware
and software in the final phases of system development [6]–
[9]. This approach is very late in the design cycle, which
increases the cost for vendors to find a fault and modify
the system and repair it. Traditional FI methods are also
mainly random-based or user-oriented approaches that are

time-consuming and computationally expensive. This is due
to the number of possible configurations for a FI experiment,
potentially resulting in an infinite configuration space. There-
fore, the first issue in FI is to select those critical faults (and
their configuration of location, amplitude, and time), which are
most likely to lead to the system’s failure. This set of critical
faults can then be injected and analyzed to determine the most
significant risks to system behavior.

In our view, the enormous complexity of CPS combined
with the (almost) infinite configuration space of faults de-
mands an automated and optimized approach to FI. Manual
approaches are too cumbersome and restricted in scope to
accurately locate and reason about catastrophic situations in
today’s CPS. Therefore, we propose here a new direction of
utilizing state-of-the-art Machine Learning (ML) techniques to
perform model-implemented FI.

Proposed method: Our research aims to tackle the system’s
complexity with less cost by focusing on model-based FI in the
design phase of the system. Our technique works on the three
main fault’s parameters (type, time, and location) to choose a
combination of them that can cause the system to fail.

In the proposed approach, the ML algorithm controls the
parameters of the faults. It first uses the domain knowledge
provided by the tester to initialize the test procedure. Domain
knowledge is a simplified model of the model under test with
some defined rules or constraints regard to the model. This
domain knowledge is modeled as a Bayesian Network (BN).
A BN is a probabilistic automaton consisting of states and
transitions which represent the system behavior and relation
between different system components. The ML algorithm first
loads the BN with domain knowledge, then it trains the BN by
running simulations, as there is not yet a static database when
the system is in model level. The ML algorithm then uses the
underlying BN to predict the catastrophic faults that fail the
system [10]. Next, FI aims the ML algorithm to simulate and
modify its prediction.

The remainder of this paper is organized as follows. In
section II, we explain the proposed technique and its main
parts. Next, we illustrate how we will validate the technique
in section III. Then, we describe the benefits and limitations
of our technique in section IV, and finally, we conclude the
paper in section V.

II. TECHNIQUE

Our recent work has demonstrated the feasibility of applying
reinforcement learning (RL) for optimizing FI [11]. In that
paper, we configured the RL algorithm to explore the fault

space efficiently. The RL algorithm searches for the critical
faults in the fault space, which violate the safety requirement.
We defined the safety requirement to be used as a reward
function for the RL agent. We also compared our method with
Monte-Carlo FI (MCFI), and the proposed technique was more
efficient in terms of fault coverage (the ratio of the number of
catastrophic faults to the total number of injected faults) [3]
and the number of required simulations to find the first critical
fault.

In Fig. 1, we illustrate our proposed approach of model-
implemented FI against traditional approach [12]. In the tra-
ditional approach in Fig. 1a, the tester selects a group of fault
parameters based on their own experience and the faults in the
fault library. Then, the user creates a group of faulty models
and runs the simulation. Next, the user investigates the results
and manually chooses the next group of faults.

In this paper, we propose the architecture in Fig. 1b. Two
components are added to the traditional approach to opti-
mize model-implemented FI: (i) explicit domain knowledge
(marked A), and (ii) a predictor/decision-maker (marked B).
The proposed approach tries to find critical faults to increase
the fault coverage and decrease the run time of the experiment.
The user provides domain knowledge, and the ML algorithm
uses that knowledge to initialize the test setup, then the ML
algorithm tries to predict the critical fault in each simulation.
The tester role is thereby eliminated by combining the explicit
modeling of domain knowledge and the ML algorithms.

(a) Traditional method.

(b) Proposed method.

Fig. 1: Comparing fault injection in industrial practice to our
proposed approach.

Fig. 2: Bayesian network of the model under test at multiple
abstraction levels.

A. Domain Knowledge

Domain knowledge is the term for a simplified version of
the model under test which the ML algorithm can interact with
easily. This knowledge assists the ML algorithm in predicting
the critical fault parameter faster and more accurately [13].
Domain knowledge includes the requirements of the system,
as well as its modes, architecture, constraints, and assump-
tions. For example, this can include ranges of input/output
or information about the (dis-)continuity of system operation
modes. The domain expert could model this knowledge as
a Probabilistic Automaton (PA). PA is based on states and
transitions with corresponding probability. An example of such
an automaton is Bayesian Networks (BN), which represents
the conditional dependency between a set of variables. In
our proposed approach, the domain expert creates an initial
BN with states and probabilities on each transition. Then, the
probability of each state will automatically be updated by the
ML algorithm during the continual learning steps.

In Fig. 2 we illustrate the BN for Adaptive Cruise Control
(ACC). ACC is a driving assistant system in a modern car
that controls the acceleration to satisfy a predefined speed
and safe distance. Hence, the ACC is safety critical at a high
level of abstraction, the safety/requirement model. Second is
the behavioral/functional model, and then the detailed model
variables and parameters at the lowest level of abstraction.
Each state connects to relevant states in both the lower and
upper levels, and in some levels are dependent on each other.

B. Machine Learning Algorithm

In this paper, we use a Dynamic Bayesian Network
(DBN) [14], specifically a Temporal Bayesian Network (TBN).
The main idea of a DBN is that we have a static BN for each
point in time, and there is a temporal link in each state between

Fig. 3: 3-Temporal Bayesian network of ACC.

the current step and the previous step. Fig. 3 presents a 3-
TBN representing states of ACC in the present time, previous
step, and the next step. Structure of BN in each time step are
identical, but probabilities are different. The 3-TBN is the core
of our proposed ML algorithm, which must first be trained and
then becomes a data repository to predict the fault parameters
and make decisions.

1) Continual learning: After defining the domain knowl-
edge, we have states and transitions at multiple levels of
abstraction. However, we require probability values for each
state. For this purpose, we must train the 3-TBN with the
simulation as, at this point in the design cycle, there is no
static database. The usage of multiple levels of abstractions in
domain knowledge and simulation aid the training to tackle
data scarcity. The learning process updates the probabilities
on the 3-TBN transitions while performing simulations. The
application of different input scenarios to the system under
test results in a variety of system action modes and states.
Through exposure to a variety of system behaviors, the 3-
TBN is trained by having all transition probabilities converge
to specific values.

2) Prediction and decision-making: After training, the 3-
TBN acts as a predictor or decision-maker. It predicts the
next state of the systems, and based on that prediction, it
decides whether to inject a fault or not. It also determines
the parameters of the critical fault such that the FI block
in the Fig.1b can perform the actual FI. For predicting the
parameters for critical faults we utilize conditional probability,
as specified for two events A and B in Eq. (1).

P (A|B) = P (B|A)× P (A)/P (B) (1)

This equation is applied to each safety requirement to calcu-
late the probability of satisfying the requirement concerning
other parameters at each point in time. Hence, the hazardous
situations are identified by obtaining information about which
specifications are in hazard, and the time when it most likely
occurs. This determines the critical fault’s activation time and
location, while the fault’s amplitude is based on the parameter
ranges derived from the domain knowledge provided by the
domain expert.

Also, the learning algorithm learns from its injection expe-
rience. For example, if the injection causes a specification to
almost fail, but it does not yet create a hazard, the ML algo-
rithm will magnify the fault amplitude in the next simulation
and try to inject the fault again.

This approach, therefore, injects a fault and runs simulations
to monitor the system’s requirements. Then, the ML algorithm
measures the severity of violating system’s specification and
modifies the fault parameters in the next iteration to find more
severe faults. The ML algorithm iterates on these steps until
discovering a satisfactory set of critical faults for further use
in the safety assessment process.

C. Corner Case Input Scenarios

For having a complete testing cycle, we need to examine as
many input scenarios as possible. Since applying all possible
input cases is infeasible for complex systems, we need to
explore the input test cases and find hazardous corner cases
that have a higher chance of creating a hazard. This search
is performed using the same procedure as described above.
In the domain knowledge, we take behavior of other agents
into account, and with considering kinematic equations, we
can omit irrelevant input cases and focus on the most critical
inputs. For example, in the ACC use case, if the initial
position of two cars is close and the velocity of the rear car
is higher than the car ahead, the chance of an accident is
higher. Therefore, we select this scenario as a high priority
for simulation and experimentation.

III. VALIDATION

We will validate the technique by comparing it with state-
of-the-art methods. Statistical FI is widely used in hardware-
based FI [15] and software-based FI [16], [17], and also
has significant results compared to random-based methods.
There are also studies in which authors exploit the ML-based
approaches to increase the efficiency of their tests [18], [19].
These techniques will be implemented alongside our own in a
common use case, such that we can compare the effectiveness
of our method.

IV. DISCUSSION

This section briefly discusses the strengths and limitations
of our approach.

Benefits: This approach uses a model-implemented ap-
proach that can be applied to an earlier phase of system
development than traditional techniques. Also, it can readily
be applied to heterogeneous and large scale CPS with high
levels of complexity. This is due to the use of multiple levels
of abstraction and a BN as the main source of analysis, which
has a low computational cost.

The approach also explores and prunes the fault space based
on a probability theorem instead of random-based approaches,
ensuring that valid and plausible faults are obtained. It tries
to find potential hazards at each point in time and discovers
catastrophic fault parameters.

In this approach, we also investigate the corner case input
scenarios, as this has a profound effect on system verification
and validation. Using BN for both FI and finding corner cases
enables the tester to investigate the model under test with a
high confidence of accuracy.

The test engineer can also manage trade-offs between
performance and fault coverage. For example, constraints on
the FI approach can be set in a way that the ML algorithm
only investigates faults with the highest probability (possible
catastrophic faults) for faster experimentation. Alternatively,
the tester can also configure the ML algorithm to explore an
expanded space of possible faults, which increases the run
time of the simulation compared with a limited exploration
experiment but would provide higher fault coverage.

Limitations: One limitation of the proposed technique is
that the tester must have sufficient knowledge about the model
under test. This knowledge enables the framework to explore
the model efficiently, but it is unclear how to decide when
knowledge is missing.

The tester must also properly model the BN. The BN
structure has a profound effect on the simulation result because
it acts as a database for the ML algorithm. With a naive BN,
the proposed method may not obtain acceptable performance
and efficiency. Therefore, future work will define a systematic
way to build up an appropriate BN from domain knowledge.

V. CONCLUSION

This paper proposes a new direction to parameter setting
for fault injection, which the machine learning algorithm
and domain knowledge optimize the injection process. This
approach improves the fault coverage and performance of
testing and produces a valid result. The effort required by
the test engineer is also reduced, decreasing the possibility
of human error and speeding up the system validation and
verification process. We also investigate the input corner cases,
ensuring a full test cycle for validation, verification, and safety
assessment of the model under test.

ACKNOWLEDGMENT

This work was partly funded by Flanders Make vzw, the
strategic research centre for the Flemish manufacturing in-

dustry; and by the Flanders Make project aSET (grant no.
HBC.2017.0389) of the Flanders Innovation and Entrepreneur-
ship agency (VLAIO). The intelligence icon in Fig. 1b is made
by Freepik from www.flaticon.com.

REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC). IEEE, 2008, pp. 363–369.

[2] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[3] A. Benso and P. Prinetto, Fault injection techniques and tools for
embedded systems reliability evaluation. Springer Science & Business
Media, 2003, vol. 23.

[4] M. Le and Y. Tamir, “Fault injection in virtualized systems—challenges
and applications,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 12, no. 3, pp. 284–297, 2014.

[5] J. Arlat et al., “Fault injection for dependability validation: a methodol-
ogy and some applications,” IEEE Transactions on Software Engineer-
ing, vol. 16, no. 2, pp. 166–182, Feb 1990.

[6] J. Carreira, H. Madeira, and J. G. Silva, “Xception: A technique for the
experimental evaluation of dependability in modern computers,” IEEE
Transactions on Software Engineering, vol. 24, no. 2, pp. 125–136, 1998.

[7] S. Han, K. G. Shin, and H. A. Rosenberg, “Doctor: An integrated
software fault injection environment for distributed real-time systems,”
in Proceedings of 1995 IEEE International Computer Performance and
Dependability Symposium. IEEE, 1995, pp. 204–213.

[8] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari: A flexible
software-based fault and error injection system,” IEEE Transactions on
computers, vol. 44, no. 2, pp. 248–260, 1995.

[9] W.-L. Kao and R. K. Iyer, “Define: A distributed fault injection and
monitoring environment,” in Proceedings of IEEE Workshop on Fault-
Tolerant Parallel and Distributed Systems. IEEE, 1996, pp. 252–259.

[10] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. Elsevier, 2014.

[11] M. Moradi, B. J. Oakes, M. Saraoğlu, A. Morozov, K. Janschek, and
J. Denil, “Exploring fault parameter space using reinforcement learning-
based fault injection a preprint,” In Safety and Security of Intelligent
Vehicles (SSIV), 2020.

[12] M. Moradi, B. Van Acker, K. Vanherpen, and J. Denil, “Model-
implemented hybrid fault injection for Simulink (tool demonstrations),”
in Cyber Physical Systems. Model-Based Design, R. Chamberlain,
W. Taha, and M. Törngren, Eds. Cham: Springer International
Publishing, 2019, pp. 71–90.

[13] S. Jha, S. Banerjee, T. Tsai, S. K. Hari, M. B. Sullivan, Z. T. Kalbarczyk,
S. W. Keckler, and R. K. Iyer, “Ml-based fault injection for autonomous
vehicles: A case for Bayesian fault injection,” in 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), June 2019, pp. 112–124.

[14] D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara, B. Rao, and
S. Russell, “Towards robust automatic traffic scene analysis in real-time,”
in Proceedings of 12th International Conference on Pattern Recognition,
vol. 1. IEEE, 1994, pp. 126–131.

[15] I. Tuzov, D. de Andrés, and J.-C. Ruiz, “Accurate robustness assessment
of hdl models through iterative statistical fault injection,” in 2018 14th
European Dependable Computing Conference (EDCC). IEEE, 2018,
pp. 1–8.

[16] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Exploiting application-level fault equivalence to analyze application
resiliency to transient faults,” ACM SIGARCH Computer Architecture
News, vol. 40, no. 1, pp. 123–134, 2012.

[17] N. Tian, D. Saab, and J. A. Abraham, “Esift: Efficient system for error
injection,” in 2018 IEEE 24th International Symposium on On-Line
Testing And Robust System Design (IOLTS), July 2018, pp. 201–206.

[18] F. R. da Rosa, R. Garibotti, L. Ost, and R. Reis, “Using machine
learning techniques to evaluate multicore soft error reliability,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 6,
pp. 2151–2164, June 2019.

[19] H. Khosrowjerdi, K. Meinke, and A. Rasmusson, “Virtualized-fault
injection testing: A machine learning approach,” in 2018 IEEE 11th In-
ternational Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2018, pp. 297–308.

